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a b s t r a c t

Vulnerable road users (VRUs)-related crashes are recognized as an important public
safety problem. However, few macro-level studies of VRUs-involved crashes have con-
sidered the long-term spatial, temporal, or spatiotemporal effects in the crash risk. This
study analyzes the bicycle and pedestrian crash risk in different injury severities by
using three multivariate Bayesian space–time models. These models address different
spatiotemporal effects to account for possible correlations across injury severities over
space and time. Various explanatory variables are used to examine the contributory
risk factors, including socio-demographic features, roadway structures, and weather
characteristics. Spatio-temporal conditional autoregression with an ANOVA style (ST-
CARanova) models outperform other two space–time models in most circumstances.
The long-term spatiotemporal effects, such as relatively high temporal autocorrelations,
significant spatial heterogeneity, and weak spatiotemporal interactions, are found in
this study. The increase of female ratios, young people ratios, unemployment rates, and
annual average high temperatures could increase the county-level crash risk of cyclists
and pedestrians. The findings provide useful insights for policy makers to improve the
safety of cyclists and pedestrians.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Cycling and walking are active transportation modes that are widely recognized as sustainable, environmentally
riendly, and resource-saving for many commuters. Although there are environmental and health benefits of cycling and
alking, users of these modes are frequently exposed to severe injury in road crashes [1–3]. In the U.S., there was a 3%

ncrease in the number of pedestrians killed while there was a 10% increase in bicycle deaths in crashes in 2018 when it
s compared with 2017 [4]. Safety of vulnerable road users (VRUs) has been paid increasing attention in recent years [5]
nd is recognized as an important public issue. Thus, it is necessary to make considerable efforts to enhance the safety of
RUs. An efficient approach is the macroscopic crash modeling of VRUs, which can examine the effects of zonal factors
n bicycle and pedestrian crashes and analyze the spatiotemporal trends of the crash risk [3,6–8]. Crash risk in this study
efers to crash rates, and is calculated as the number of bicycle or pedestrian crashes divided by the total number of
ycling or walking trips. By further understanding the contributory zonal factors of the VRUs-involved crash risk, both
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ummary of the methods used in crash frequency analysis for VRUs in the macroscopic scale.
Model Research object Spatial unit Data and locations Explanatory variables If consider

spatiotemporal
effects?

Literature

Bayesian joint/
hierarchical model

Pedestrian and bicycle
crashes

TAZs 2010–2012 Florida Traffic and roadway &
socio-demographic & land
use & commuting variables

No [16]

Non-motorist crashes TAZs 2010–2012 Florida Traffic and roadway &
socio-demographic &
commuting variables

No [3]

Pedestrian, bicycle,
two-wheelers users crashes

Wards 2010–2012 Delhi Socio-demographic & traffic
infrastructure & commuting
variables

Only spatial
correlation

[17]

Pedestrian crashes ZIP areas 2009–2011 Florida Traffic and roadway &
socio-demographic & land
use & transit variables

Only spatial
heterogeneity and
correlation

[18]

Pedestrian and bicycle
crashes

TAZs 2005–2006 Florida Traffic and roadway &
socio-demographic &
neighborhood-related
variables

Only spatial
correlation

[6]

Random parameter
negative binomial
model

Pedestrian–vehicle crashes Census tracts 2002–2006 New York Traffic and roadway &
socio-demographic & land
use & transit variables

No [19]

Bicycle crashes Super output areas 2012–2013 Great
London

Traffic and roadway &
socio-demographic & land
use variables

No [20]

Generalized additive
model

Vehicle–bicycle,
vehicle–pedestrian crashes

Census tracts 2005–2012 Chicago Traffic and roadway &
socio-demographic & land
use & commuting variables

Only spatial
correlation

[21]

Random coefficients
multivariate model

Pedestrian crashes Census tracts 2009 Manhattan Traffic and roadway &
socio-demographic & land
use & commuting &
activity intensity & transit
variables

Only spatial
correlation

[22]

Geographically
weighted regression
model

Non-motorist crashes Census tracts 2002–2006 California Traffic and roadway &
socio-demographic & land
use & traffic infrastructure
& structural measures

Only spatial
correlation

[23]

Dual state count model Pedestrian and bicycle
crashes

TAZs 2010–2012 Florida Traffic and roadway &
socio-demographic & land
use & commuting variables

Only spatial
spillover effects

[2]

Decision tree model Pedestrian and bicycle
crashes

TAZs 2010–2012 Florida Traffic and roadway &
socio-demographic & land
use & commuting variables

No [24]

planning-stage and management-stage strategies could be adopted to proactively improve regional safety performance
towards cyclists and pedestrians.

When it comes to crash frequency modeling, unobserved heterogeneity and correlations in the crash data are often
egarded as a big challenge, and neglecting these characteristics may result in biased model results [9]. Underlying
orrelations between different crash severities may produce heterogeneity across observations [9,10]. Additionally,
rash numbers are aggregated over space and time, which produces unobserved heterogeneity and correlations as well
9,11]. During the past decades, many contributions have been made to address the unobserved heterogeneity and
orrelations in vehicle–vehicle crashes from the aspect of space and time [12–15]. However, limited studies focused on the
patiotemporal effects of the crash risk in VRUs–vehicles. Especially, studies of the long-term (over 10 years) spatial trends,
emporal trends, and spatiotemporal interactions for different severity levels of VRUs crashes seem to be inadequate so
ar.

In this study, we utilize three multivariate Bayesian space–time models to investigate the long-term spatiotemporal
ffects in bicycle and pedestrian crash risk by different injury severities in North Carolina from 2009 to 2018. Multiple
patiotemporal components are proposed and compared in order to choose the most appropriate model for the VRUs-
nvolved crashes at the county-level. Zonal risk factors including socio-demographic features, roadway structures, and
eather characteristics are also investigated to explore their effects on the crash risk of cyclists and pedestrians,
espectively.

. Previous work

Many studies have conducted the frequency analysis of VRUs-involved crashes in recent years. Table 1 shows these
tudies that have been conducted for different types of VRUs (e.g., pedestrian, cyclists, and two-wheeler users), spatial
nits (e.g., traffic analysis zones (e.g., TAZs, ZIP areas, and census tracts), temporal periods (1–8 years), and regions (e.g.,
.S., U.K., Colombia) at the macroscopic scale.
Statistical approaches were widely used in the macro-level crash frequency modeling of VRUs, such as Bayesian

oint/hierarchical models [3,6,16–18], random parameter negative binomial models [19,20], and generalized additive
odels [21,25]. Except for the above methods, random coefficients multivariate models [22], geographically weighted

egression models [23], dual state count models [2], and machine learning algorithms [26] also show great potential in
xploring zonal contributing factors of the VRUs-involved crashes. Ma et al. [14] suggested that the flexible structure of
ayesian hierarchical models can incorporate spatial correlations and be readily extended to address more complicated
odels. They asserted that a major drawback of some models is the lack of a correlation structure which can explicitly
efine the spatial or temporal correlations. Based on the Bayesian framework, a number of studies added spatial correlation
2
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omponents to investigate the spatial effects in crash data [6,17,18]. Recently, Bayesian space–time models have been
roven powerful in detecting both spatial and temporal trends of crash numbers. Nevertheless, current researches of
ayesian space–time models mostly concentrated on vehicle–vehicle crashes instead of VRUs–vehicle crashes [12–14].
As for the exposure of VRUs–related crashes, there are different methods to estimate the actual exposure. Lee et al.

27] used a multiple linear regression model to calculate walking exposure (i.e., trips, lengths, or duration). Saad et al. [28]
ompared three adjustment methods of bicycle exposure, and they found that using both population and field observation
ata adjustment has the best performance of bicycle crash modeling. In terms of explanatory variables, some studies
xplored socio-demographic, land use, and commuting variables, and other studies also investigated the influence of traffic
nfrastructure, transit-related factors in VRUs–involved crashes. However, previous researches have neglected to consider
he weather variables at the macro-level VRUs’ crash frequency models. Several studies constructed zonal models of VRUs-
nvolved crashes based on TAZs [2,3,6,16] and census tracts [19,21–23] for the accessibility of the data. Nevertheless, the
ong-term (more than ten years) spatiotemporal effects in the crash risk of VRUs were not investigated in previous studies.

For the spatiotemporal effects in the zonal modeling for VRUs–involved crashes, several studies are focusing on spatial
orrelation [17,21,22], spatial heterogeneity [18], and spatial spillover effects [2]. Liu and Sharma [15] pointed out that
nobserved heterogeneity across space and time should be addressed, and it is often non-negligible in crash frequency
odeling. Temporal correlations of crash numbers commonly exist because crash-related factors, such as economy,
eather, environment, and travel modes exhibit temporal features. Eksler and Lassarre [12] proposed a Bayesian space–
ime model to assess the spatial distribution and temporal trends of crash risk in a cohesive way. Besides, multivariate
ayesian space–time models not only have the advantages of goodness-of-fit over univariate Bayesian space–time models
ut also could consider the correlation across different injury severities in the modeling [14,15].
This study applies three multivariate Bayesian space–time models on the crash risk of VRUs (bicycle–vehicle and

edestrian–vehicle in this study) by injury severities to explore the long-term spatiotemporal effects. The purpose of
his study is to answer the following two questions: (i) what are the long-term spatiotemporal effects in the crash risk of
ifferent injury severities of VRUs? and (ii) how do the socio-demographic, roadway, weather factors have influence on
he crash risk of VRUs by injury severities? The rest of the paper is organized as follows. Section 3 presents the Bayesian
pace–time models. Section 4 comprises the description of the crash data used for this study. Section 5 includes the
nalyses and discussions of the observed results. Conclusions are provided in Section 6.

. Methodology

.1. General framework

Poisson models are usually utilized to model crash frequency due to the nature of count data [29,30]. Extension models
f Poisson distribution, such as Poisson–gamma and Poisson–lognormal models, were usually used to accommodate the
verdispersion in crash counts [31]. Studies implied that the multivariate Poisson–lognormal model (MVPLN) is flexible
s it allows for a more general correlation structure [31]. Besides, MVPLN have been proved to be more powerful than
nivariate Poisson–lognormal model (UVPLN) in the previous literature [32–34].
In this study, a Bayesian hierarchical architecture is applied in the general modeling framework by taking consideration

f both spatial effects, temporal effects, and spatiotemporal interaction effects. In the first level of the hierarchical model,
t is assumed that:

ystk ∼ Poisson(λstk) (1)

ystk ∼ Poisson(Estθstk) (2)

where ystk is the crash number of injury severity k (i.e., killed and suspected serious injury (KA) crashes, suspected
minor (B) crashes, and possible injury and no injury (CO)) for the area s (i.e., counties, s = 1, 2, . . . , 100) in the tth
year(t = 1, 2, . . . , 10); λstk is the mean crash number of injury severity k for the area s in the tth year; θstk is the crash
risk of injury severity k for the area s in the tth year (i.e. crash number per 100,000 cycling or walking trips in this study),
and Est is the number of cycling or walking trips of area s in order to represent the exposure.

Next, MVPLN is formulated by specifying the crash risk at the second level of the hierarchical model

log θstk = αk + XT
stk × βk + ψstk (3)

where αk is the intercept term of injury severity k; βk = (βk1, βk2, . . . , βkm) is the m-dimensional regression coefficient
vector of injury severity k, and m is the number of explanatory variables; X stk = (Xstk1, Xstk2, . . . , Xstkm) is the m-
dimensional explanatory variable vector for the area s in the tth year; ψstk represents spatiotemporal random effects of
injury severity k for the area s in the tth year. Three candidate Bayesian space–time models with different spatiotemporal
effects are constructed in this study to further investigate the unobserved heterogeneity across space and time in bicycle
crash risk and pedestrian crash risk. Three candidate models are the spatio-temporal conditional autoregression with a first
order autoregressive process (ST-CARar), spatio-temporal conditional autoregression with an ANOVA style (ST-CARanova),
and spatio-temporal conditional autoregression with spatially adaptive smoothing (ST-CARadaptive).
3
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.2. ST-CARar model

The ST-CARar model proposes the spatiotemporal structure with a multivariate first-order autoregressive process to
onsider residual spatiotemporal autocorrelation in the data [35]. The model specification is given below.

ψst = φst s = 1, . . . ,K (4)

φt
⏐⏐φt−1 ∼ N(ρTφt−1, τ

2Q (W , ρS)−1) t = 2, . . . ,N (5)

φ1 ∼ N(0, τ 2Q (W , ρS)−1) (6)

τ 2 ∼ Inverse − Gamma(a, b) (7)

ρS, ρT ∼ Uniform(0, 1) (8)

where φt = (φ1t , . . . ,φSt ) is the vector of random effects for tth year, which evolved over time through a multivariate
first-order autoregressive process with temporal autoregressive parameter ρT . Thus, temporal autocorrelation is induced
via the mean ρTφt−1. The level of temporal autocorrelation is controlled by ρT , ρT = 0 means temporal independence,
and ρT = 1 means high temporal autocorrelation with a first-order random walk model. W = (ωik) denotes a binary
K × K adjacency matrix, which is based on the contiguity structure of the area S. Element ωik = 1 means that areal unit i
shares a border with areal unit k, otherwise ωik = 0. Spatial autocorrelation is induced by the precision matrix Q(W, ρS)
[36] and corresponds to the CAR models. The algebraic form of this matrix is given by:

Q (W , ρS) = ρS [diag (W1)− W ] + (1 − ρS)I (9)

where 1 is the K × 1 vector of ones while I is the K × K identity matrix; Spatial autocorrelation is induced by the
variance τ 2Q (W , ρS)−1. ρS = 1 represents the intrinsic CAR prior [37] for high autocorrelation; ρS = 0 corresponds to
independent random effects with constant mean and variance. Therefore, this model induced temporal autocorrelation
through the conditional expectation while spatial autocorrelation is induced via the precision matrix.

3.3. ST-CARanova model

The ST-CARanova model is a modification of the model proposed by Knorr-Held [38], and its spatiotemporal structure
consists of an overall spatial effect, an overall temporal trend, and an independent space–time interaction.

ψstk = φsk + δtk + γstk (10)

φsk
⏐⏐φ−sk,W ∼ N(

ρS
∑S

j=1 ωsjkφjk

ρS
∑S

j=1 ωsjk + 1 − ρS
,

τ 2S

ρS
∑S

j=1 ωsjk + 1 − ρS
) (11)

δtk | δ−tk,D ∼ N(
ρT

∑N
j=1 dtjkδjk

ρT
∑N

j=1 ωtjk + 1 − ρT
,

τ 2T

ρT
∑N

j=1 dtjk + 1 − ρT
) (12)

γstk ∼ N(0, τ 2I ) (13)

τ 2S , τ
2
T , τ

2
I ∼ Inverse − Gamma(a, b) (14)

ρS, ρT ∼ Uniform(0, 1) (15)

here φsk = (φ1k, . . . , φSk) and δtk = (δ1k, . . . , δNk) are common sets of spatial random effects and temporal random
ffects respectively, and both are modeled by the CAR prior [36]. γstk is the independent space–time interaction of injury
everity k for the area s in the tth year, which is assumed to follow a zero-mean multivariate normal distribution. τ 2S , τ

2
T , τ

2
I

re spatial random effects variance, temporal random effects variance, and space–time interaction variance, respectively.
ixed uniform (ρS, ρT ) and conjugate τ 2S , τ

2
T , τ

2
I priors are specified for the remaining parameters, and the specifications

or the latter are set as a = 1 andb = 0.01.

.4. ST-CARadaptive model

The ST-CARadaptive model is the extension of the ST-CARar model to allow for spatially adaptive smoothing [39].
t considers localized spatial autocorrelation by allowing spatially neighboring random effects to be correlated or
onditionally independent. It is achieved by modeling the non-zero elements of the neighborhood matrix W as unknown
arameters rather than assuming they are fixed at 1. These adjacency parameters are collectively denoted by w+

=

ωsj
⏐⏐ k ∼ j, where k ∼ j means (φst , φjt ) are conditionally independent for all years given the remaining random effects.

hese adjacency parameters in w+ are modeled on the unit interval by assuming a multivariate Gaussian prior distribution
n the transformed scale v+

= log(w+, (1−w+)). This prior is a shrinkage model with a constant mean µ and a diagonal
ariance matrix with variance parameters ζ 2, and is given by:

f(v+
⏐⏐ τ 2ω, µ) ∝ exp[−

1
2τ 2ω

(
∑

(vis − µ)2)] (16)

visϵv+

4
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Fig. 1. Spatial distribution of the total number of the bicycle (a) and pedestrian (b) crashes in North Carolina from 2009 to 2018.

τ 2ω ∼ Inverse − Gamma(a, b) (17)

The prior distribution for v+ assumes that the degree of smoothing between pairs of adjacent random effects is not
spatially dependent [39]. The elements of v+ are shrunk to µ under small values of τ 2ω . This paper employs µ = 15
ecause it avoids numerical issues when transforming between v+ and w+, and implies a prior preference for values of
sj close to 1.

.5. Model comparison and checking

Deviance information criteria (DIC) is usually used for evaluating the goodness of fitting for Bayesian hierarchical
odels in previous literature, and it is defined as [40]:

DIC = D
(
θ
)
+ 2pD = D + pD (18)

here θ is the posterior mean of the parameters; D
(
θ
)
is the deviance at the posterior mean of the parameters; pD is

he effective number of the model; and D is the mean of the sampled deviances from Markov Chain Monte Carlo (MCMC)
imulations. Bayesian models with smaller DIC values are preferred. Also, posterior predictive distribution can evaluate the
uality of model fitness [41]. The posterior predictive p-value is defined as the following based on the posterior predictive
istribution.

p = P[D(yrep) ≥ D(y)| y] (19)

where p represents the probability that the observed measure D(y; θ ) is more extreme than the replicated discrepancy
easure D(yrep; θ ). p-values around 0.5 indicate that the distribution of the replicated and observed data are close, which
eans the good fitting of Bayesian models.

. Data preparation

Bicycle-vehicles and pedestrian-vehicles crashes from counties in North Carolina are used for the analysis. During
009–2018, 9247 bicycle-involved crashes and 28,787 pedestrian-involved crashes occurred in 100 counties in North
arolina. Bicycle–vehicle crashes and pedestrian–vehicle crashes take the proportion of 24.48% and 75.52% of the total
2,917 crashes, respectively. Fig. 1 presents the spatial distribution of the selected bicycle and pedestrian crashes.
Crash data is collected from the North Carolina Department of Transportation (NCDOT) and the injury severity is

ecorded as the format of KABCO. Due to the sparseness of injury severity, three severity levels are considered, namely
A crashes, B crashes, and CO crashes. There are 618 KA crashes, 3288 B crashes, and 4151 CO crashes in the selected
icycle crash dataset. There are 3,456 KA crashes, 8917 B crashes, and 12,487 CO crashes in the selected pedestrian crash
ataset. The crash risk of bicycles and pedestrians in different crash severities in North Carolina from 2009 to 2018 is
hown in Fig. 2. The dependent variables for this study are the crash risk of bicycle–vehicle and pedestrian–vehicle for
hree injury severities levels.
5
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Fig. 2. Crash risk of different severities (KA, B and CO) in bicycle and pedestrian crashes per year, (a) crash risk of bicycle crashes, (b) crash risk of
pedestrian crashes.

Table 2
Summary statistics of explanatory variables.
Variables Description Mean StandardDeviation Maximum Minimum

Exposure
ExposureBike Annual cycling trips per county (*100,000) 0.032 0.003 0.397 0.001
ExposurePed Annual walking trips per county (*100,000) 0.106 0.027 1.193 0.004

Socio-demography
PopuDens Population density per county (number of people per mile2) 202.542 278.607 2077.640 8.480
MaleRate Ratios of male people per county 0.491 0.017 0.556 0.464
FemaleRate Ratios of females per county 0.509 0.017 0.344 0.086
YoungRate Ratios of people aged between 15 and 24 per county 0.129 0.032 0.344 0.086
OldRate Ratios of people aged 65 or over per county 0.175 0.045 0.313 0.073
Unemployment Unemployment rates per county 0.082 0.032 0.181 0.030
Median-Income Median household income per county (dollars) 44.314 9.072 81.123 27.622
Traffic and roadways
RoadDensity Road density per county (mile per mile2) 5.764 0.668 7.423 4.216
FreewayRate Proportions of length of freeways 0.068 0.048 0.185 0.010
ArterialRate Proportions of length of arterials 0.101 0.058 0.252 0.009
CollectorRate Proportions of length of collectors 0.188 0.078 0.352 0.001
LocalRate Proportions of length of local roads 0.644 0.117 0.957 0.361
Weather
Hightemp Annual average high temperatures per county (◦F) 70.662 3.069 79.275 58.617
Lowtemp Annual average low temperatures per county (◦F) 48.734 3.751 56.725 37.300
Precipitation The total annual amount of precipitation per county (inch) 51.126 12.558 112.140 0
Snowfall The total annual amount of snowfall per county (inch) 3.805 7.739 94.900 0

According to 2009 National Household Travel Survey, the national walking and bike mode share are 2.8% and 0.8%,
respectively [42]. According to 2017 National Household Travel Survey, the national walking and bike mode share are 3.3%
and 1.0% [43]. In this study, we use the product of populations, daily trips per person, walking or bike mode share, and time
period (365 days) as the exposure for pedestrian or bicycle crashes in each county per year. A host of explanatory variables
is considered for the analysis and grouped into three categories: socio-demographic characteristics (i.e., population
density, male ratios, female ratios, young people ratios, old people ratios, unemployment rates, median household
incomes), roadway structure information (i.e., roadway density, the proportion of freeways/arterial roads/collectors/local
roads length), and weather features (i.e., average high temperature, average low temperature, precipitation, and snowfall).
Socio-demographic data for each county per year is obtained from the U.S. Census Bureau and the U.S. Bureau of Labor
Statistics. The length of total roadways, freeways, arterial roads, collectors, and local roads is obtained from the Roadway
Characteristics Inventory (RCI) of NCDOT. To investigate the influence of annual weather changes on bicycle and pedestrian
crashes, an array of weather-related explanatory variables in each county are obtained from US Climate Data, which
recorded historical daily, monthly and annual weather data since 2009. A statistical summary of explanatory variables is
presented in Table 2.
6
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Table 3
Model comparisons of three Bayesian space–time models for cyclist and pedestrian crashes.
Models Injury severity D D

(
θ
)

pD DIC

Bicycles crashes
ST-CARar KA 1608.1 1540.9 67.3 1675.4

B 2851.6 2667.8 183.8 3035.5
CO 2891.1 2690.4 200.7 3091.9

ST-CARanova KA 1626.5 1577.5 49.0 1675.5
B 2836.7 2668.0 168.7 3005.5
CO 2878.6 2713.2 165.4 3044.1

ST-CARadaptive KA 1610.0 1544.8 65.2 1675.2
B 2850.6 2666.0 184.6 3035.2
CO 2890.6 2690.0 200.7 3091.3

Pedestrian crashes
ST-CARar KA 3192.1 3097.6 94.5 3286.6

B 3885.9 3718.7 167.2 4053.1
CO 4177.7 3910.1 267.6 4445.2

ST-CARanova KA 3126.0 3126.0 82.6 3291.6
B 3883.9 3726.1 157.9 4041.8
CO 4177.6 3929.7 247.9 4425.6

ST-CARadaptive KA 3192.5 3095.6 96.9 3289.5
B 3886.0 3719.5 166.5 4052.5
CO 4180.3 3913.3 267.1 4447.4

Note: bold numbers mean that the lowest DIC among three Bayesian space–time models at the same injury severity datasets.

Before incorporating variables into Bayesian space–time models, the preliminary work is to examine spatial and
temporal correlations in crash data [13,15]. Moran’s I statistic is frequently utilized to test spatial correlations in the
traffic safety field [6,44,45]. With statistical significance p-value, (i) if Moran’s I is positive and close to 1, it represents
he incremental spatial autocorrelation; (ii) if Moran’s I is equal to 0, it indicates a random pattern; and (iii) if Moran’s I
s less than 0, it represents a dispersed pattern [46]. The global Moran’s I statistics of different injury severities of bicycle
nd pedestrian crash risk in each year from 2009 to 2018 are calculated using the toolbox of ArcGIS with inverse-distance.
esults show that the existence of some spatial autocorrelations of crash risk in every injury severity [14,15].
All candidate variables are regarded as model inputs at first, then several variables are selected by the convergence

esults of each model. Meanwhile, variance inflation factors (VIFs) and correlation tests are used to diagnose multi-
ollinearity in each model. Seven explanatory variables are remained at last, including female ratios, young people ratios,
nemployment rates, median household income, roadway density, average high temperatures, and snowfall.

. Results and discussion

Model fitting is performed by using three separate MCMC chains in package ‘CARBayesST’ in the R platform [47]. The
otential scale reduction factor (PSRF) is used to assess the convergence of multiple chains [48]. Convergence is assumed
o occur when PSRF is less than 1.2. Three simulation chains were run with 25,000 iterations for each chain, and 50,000
amples are discarded as burn-ins. The remaining 25,000 samples are retained to obtain the posterior distributions of
arameters with a thinning interval of 5. Three Bayesian space–time models, ST-CARar model, ST-CARanova model, and
T-CARadaptive model, are estimated and compared for three injury severities of bicycle and pedestrian crashes to explore
he long-term spatiotemporal effects in crash risk.

.1. Model comparisons

The goodness-of-fit of candidate models is judged based on the posterior mean of deviance (D), deviance evaluated at
he posterior mean (D

(
θ
)
), the effective number of parameters (pD), and deviance information criterion (DIC). Besides, the

posterior predictive performance is also tested, and the results show that p-values of all the estimated Bayesian space–
time models are around 0.5. PSRFs of all space–time models are less than 1.2, which indicates the convergence of each
chain in Bayesian models. Model comparison results are presented in Table 3.

A comparison between three candidate space–time models highlights the importance of including spatial main effects,
temporal main effects, and spatiotemporal interaction term in the modeling (the DIC value of the ST-CARanova model is
lowest for B and CO severities of bicycle crashes among three different space–time models). It is shown in Table 3 that the
DIC values do not show big differences among three Bayesian models for KA severity of bicycles crashes. A possible reason
for this is that a large number of zeros (more than 60% of crashes risk is zero) in the KA injury severity of cyclist crashes
displayed similar spatiotemporal effects, and separable or inseparable spatial or temporal effects seem to be almost the
same. However, Liu and Sharma [13] found that fatal crash frequencies of vehicle–vehicle exhibited some linear trend.

The benefit of introducing the independent spatiotemporal effects is revealed by the significant lowest DIC values of
ST-CARanova models for B and CO injury severities of pedestrian crashes. This finding indicates that there are significant
overall spatial effects, temporal trends, and an independent space–time interaction in the pedestrian crash risk during ten
years, which need to be incorporated in the modeling of minor and no injury severity levels. Additionally, both spatial and
temporal effects play important roles in unobserved heterogeneity cross injury severities and thus need to be considered
in the Bayesian modeling. These conclusions are supported by previous literature [6,13,14]. Although the ST-CARadaptive
model is the improved version of the ST-CARar model by adding a localized spatially adaptive smoothing structure, the
7
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Table 4a
ST-CARanova model for different severities of bicycle crashes in North Carolina from 2009 to 2018.
Variables KA B CO

Mean 95% CI Mean 95% CI Mean 95% CI

Intercept −7.10 (−13.57, −0.77) −8.61 (−15.03, −2.02) −8.45 (−15.12, −1.37)
Ratios of females 11.49 (0.59, 22.71) 12.15 (1.91, 21.74) 13.06 (2.31, 23.14)
Ratios of people aged between 15 and 24 3.90 (0.09, 7.62) 5.47 (1.80, 8.83) 5.00 (0.71, 9.25)
Unemployment rates 2.19 (−1.97, 6.44) 5.15 (1.35, 8.58) 3.96 (−0.04, 7.41)
Median household income 0.01 (0.00, 0.003) 0.02 (0.01, 0.04) 0.02 (0.00, 0.04)
Road density −0.41 (−0.61, −0.21) −0.16 (−0.44, 0.09) −0.06 (−0.42, 0.04)
Annual average high temperature 0.07 (0.03, 0.12) 0.08 (0.04, 0.12) 0.07 (0.02, 0.11)
τ2S 0.19 (0.08, 0.44) 0.35 (0.21, 0.69) 0.55 (0.34, 1.05)
τ2T 0.01 (0.00, 0.03) 0.01 (0.00, 0.05) 0.01 (0.00, 0.04)
τ2I 0.01 (0.00, 0.07) 0.04 (0.02, 0.08) 0.03 (0.02, 0.05)
ρS 0.14 (0.01, 0.92) 0.05 (0.00, 0.28) 0.06 (0.00, 0.30)
ρT 0.41 (0.02, 0.92) 0.22 (0.01, 0.81) 0.49 (0.03, 0.94)

Note: bold numbers mean that the estimated coefficients are significant.

Table 4b
ST-CARadaptive model for different severities of bicycle crashes in North Carolina from 2009 to 2018.
Variables KA B CO

Mean 95% CI Mean 95% CI Mean 95% CI

Intercept −8.33 (−14.29, −2.76) −8.21 (−12.34, −4.01) −11.92 (−16.33, −7.36)
Ratios of females 12.84 (3.06, 22.61) 13.59 (5.69, 21.24) 19.36 (11.16, 27.31)
Ratios of people aged between 15–24 3.75 (0.34, 7.16) 5.92 (3.14, 8.39) 7.56 (4.83, 10.41)
Unemployment rates 2.71 (−0.94, 6.40) 6.08 (3.55, 8.50) 6.83 (4.02, 9.62)
Median household income 0.01 (0.00, 0.02) 0.03 (0.02, 0.04) 0.02 (0.01, 0.03)
Road density −0.40 (−0.59, −0.21) −0.14 (−0.29, 0.02) −0.07 (−0.23, 0.08)
Annual average high temperature 0.08 (0.04, 0.13) 0.05 (0.03, 0.08) 0.06 (0.03, 0.09)
τ2 0.07 (0.02, 0.19) 0.09 (0.06, 0.15) 0.11 (0.07, 0.17)
ρS 0.13 (0.00, 0.57) 0.07 (0.00, 0.32) 0.12 (0.01, 0.44)
ρT 0.89 (0.67, 0.99) 0.94 (0.87, 0.99) 0.96 (0.90, 1.00)
τ2ω 134.41 (99.25, 178.81) 135.21 (97.81, 179.47) 135.83 (99.47, 180.80)

Note: bold numbers mean that the estimated coefficients are significant.

Table 5a
ST-CARanova model for different severities of pedestrian crashes in North Carolina from 2009 to 2018.
Variables KA B CO

Mean 95% CI Mean 95% CI Mean 95% CI

Intercept −3.21 (−6.42, 0.03) −5.98 (−9.93, −2.28) −3.41 (−8.45, 1.26)
Ratios of females 6.25 (1.32, 11.34) 11.01 (4.97, 17.23) 7.00 (−0.08, 14.48)
Ratios of people aged between 15–24 1.40 (−0.5, 3.28) 3.28 (0.97, 5.43) 2.97 (−0.18, 5.67)
Median household income −0.01 (−0.01, 0.00) 0.00 (−0.01, 0.01) 0.00 (−0.01, 0.01)
Road density 0.01 (−0.1, 0.11) 0.15 (0, 0.33) 0.31 (0.09, 0.52)
Annual average high temperature 0.05 (0.02, 0.08) 0.04 (0.02, 0.07) 0.03 (0, 0.06)
Annual total amount of snowfall 0.00 (−0.01, 0.01) 0.01 (0, 0.01) 0.00 (−0.01, 0.01)
τ2S 0.06 (0.02, 0.16) 0.12 (0.07, 0.22) 0.24 (0.15, 0.46)
τ2T 0.02 (0.01, 0.05) 0.01 (0, 0.02) 0.01 (0, 0.02)
τ2I 0.01 (0, 0.03) 0.01 (0.01, 0.03) 0.03 (0.02, 0.04)
ρS 0.17 (0.01, 0.69) 0.05 (0, 0.27) 0.07 (0, 0.33)
ρT 0.50 (0.03, 0.94) 0.30 (0.01, 0.85) 0.37 (0.02, 0.89)

Note: bold numbers mean that the estimated coefficients are significant.

fitting performance of these two models shows great proximity in terms of four evaluation indexes. This implies that
there is no significant localized spatial autocorrelation that need to be emphasized in the crash risk for different injury
severity levels in bicycle and pedestrian crashes.

5.2. Long-term spatiotemporal random effects

Three Bayesian space–time models are utilized to explore the long-term spatiotemporal random effects of bicycle and
pedestrian crash datasets by different serveries in the present study. The ST-CARanova and ST-CARadaptive model results
of bicycle crashes are shown in Table 4a and Table 4b. The ST-CARanova and ST-CARar model results of pedestrian crashes
are shown in Tables 5a and 5b.

For the ST-CARanova models, the temporal autoregressive parameters for KA, B, and CO crashes of cyclists are 0.41, 0.22,
and 0.49, respectively, while these for KA, B, and CO crashes of pedestrian are 0.50, 0.30, and 0.37, respectively. This result
indicates that there are relatively high temporal autocorrelation in crash risk of bicycle crashes and pedestrian crashes in
the long time period. Besides, small spatiotemporal interaction variances of all severities in bicycle and pedestrian crashes
are found. In terms of the DIC values displayed in Table 3, the goodness-of-fit of the ST-CARanova model indicates that
the independent spatiotemporal interaction structure and spatial and temporal main effects played an important role in
the crash modeling. It is necessary to incorporate them when we estimating Bayesian space–time models of VRU-related
crashes.

The spatial autocorrelation parameters for KA, B, and CO crashes of cyclists in the ST-CARadaptive model are 0.07,
0.09, and 0.11, respectively. Those for KA, B, and CO crashes of pedestrians in the ST-CARar model are 0.89, 0.03, and
8
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Table 5b
ST-CARar model for different severities of pedestrian crashes in North Carolina from 2009 to 2018.
Variables KA B CO

Mean 95% CI Mean 95% CI Mean 95% CI

Intercept −2.57 (−5.4, 0.23) −5.56 (−8.16, −2.86) −3.35 (−6.63, −0.38)
Ratios of females 5.89 (1.22, 10.78) 11.85 (6.89, 16.37) 9.53 (3.91, 15.59)
Ratios of people aged between 15–24 1.31 (−0.39, 2.96) 4.34 (2.77, 5.92) 3.84 (1.81, 5.67)
Median household income 0.00 (−0.02, 0.00) 0.00 (−0.01, 0.00) −0.01 (−0.01, 0.00)
Road density 0.01 (−0.08, 0.11) 0.19 (0.08, 0.28) 0.27 (0.16, 0.39)
Annual average high temperature 0.04 (0.02, 0.07) 0.03 (0.01, 0.05) 0.01 (0.00, 0.03)
Annual total amount of snowfall 0.00 (−0.01, 0.01) 0.01 (0.00, 0.01) 0.00 (−0.01, 0.00)
τ2 0.05 (0.02, 0.09) 0.03 (0.02, 0.06) 0.07 (0.05, 0.11)
ρS 0.89 (0.53, 0.98) 0.07 (0.00, 0.34) 0.11 (0.01, 0.32)
ρT 0.92 (0.73, 0.99) 0.96 (0.89, 1.00) 0.93 (0.87, 0.98)

Note: bold numbers mean that the estimated coefficients are significant.

0.07, respectively. Unobserved spatial heterogeneity in different counties of bicycle and pedestrian crashes is further
confirmed to exist across injury severities as their estimated spatial autocorrelation parameters are very small (close
to 0). Temporal autoregressive parameters for three injury severities of both cyclists and pedestrians are much larger
than spatial autocorrelation parameters (all close to 1) in the ST-CARaptive and ST-CARar models. This finding indicates
that high temporal autocorrelations are found to exist in the bicycle and pedestrian crash risk of different injury severities
at the county-level, which is consistent with other similar researches of Liu and Sharma [13].

Overall, the long-term spatiotemporal effects of bicycle and pedestrian crash risk in different injury severities are
different from each other which confirms some heterogeneity of spatial and temporal effects across three crash severities
[13,14]. However, both bicycle and pedestrian crash risk have some similar patterns, such as relatively high temporal
autocorrelations, significant spatial heterogeneity, and weak spatiotemporal interactions. This important finding provides
valuable suggestions for the future work in Bayesian space–time modeling for crash frequency modeling for VRUs in a
long time period.

5.3. Model parameter interpretations

5.3.1. Bicycles crashes
The final ST-CARanova model of bicycle–vehicle crashes (Table 4a) retains five, six, and five explanatory variables

which significantly different from zero at 95% Bayesian credible interval (BCI) in KA, B, and CO crashes, respectively.
These variables are ratios of females, ratios of young people (aged between 15 to 24), median household incomes,
unemployment rates, roadway density, and annual average high temperatures. In the comparison of three injury severities
in bicycle crashes, it is found that socio-demographic characteristics (i.e., female ratios, young people ratios, and
unemployment rates) have the largest impact on the crash risk of bicycles–vehicles crashes, followed by the roadway
features (i.e., roadway density) and weather (i.e., annual average high temperature).

Ratios of females and young people show relatively huge effects on three injury severities of bicycle crash risk. The
estimated coefficients of female ratios and young people ratios variables are positive and the largest among all the fitted
coefficients in the ST-CARanova model. These outcomes imply that high ratios of females in Durham, Edgecombe, Vance
counties would result in more bicycle crashes of different severities. This result is interesting and in accord with the study
of Carvajal et al. [25]. Ratios of females in counties of North Carolina do not show much fluctuation and they only vary at
a small scale from 2009 to 2018, which is similar to the temporal trend of crash risk for cyclists. However, ratios of males
are discovered to improve the bicycle crash frequency by some scholars [7,20]. High ratios of young people also bring a
great threat to bicycle safety performance which significantly contributed to minor and no injury bicycle crashes. Studies
suggested that younger people are more likely to be associated with some unsafe behaviors when they are cycling, such
as using cellphones, not wearing helmets, and cycling against the traffic flow [49,50].

Unemployment rates produce significant positive impacts on B and CO crashes but insignificant positive impact on KA
crashes of cyclists. This study conducts the marginal effects analysis of the ST-CARanova model for bicycle crashes. The
estimated covariate effects are the crash risk for one unit increase in each variable and are obtained through the analysis
of the marginal effects. Results showed that the crash risk of one dollar increase in median household income is 1.025,
suggesting that such an increase corresponds to a 2.5% additional crash risk of minor injury bicycle crashes. Ding et al.
[20] also believed that the increase in median household income by 100% is correlated to the increase in bicycle crashes
by 19%. One possible reason could be that cycling popularity will be increased as the median household income increased.
Increased road density is found to significantly decrease the bicycle crash risk of KA in this study. One possible reason
is that denser roads in the urban regions usually have more traffic, which slow down the speed of bicycles and vehicles.
However, previous studies found that, ratios of local streets greatly increase crash frequency rather than the total road
density, because cyclists frequently commune in the urban areas where have many local streets [2,16].

Average high temperature shows significant positive effects on three injury severities of cyclists. The results of the
marginal effects analysis show that for one unit increase of annual high temperature, an increase in the crash risk of
three severities 7.8%%, 7.9%%, and 6.7%% would be expected. This result indicates that annual average high temperature
is a very informative covariate of bicycle crashes, as higher temperatures and warm seasons will attract more trips of
cycling, which in line with the study of Ding et al. [20].
9
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.3.2. Pedestrian crashes
Table 5a shows significant explanatory variables for KA, B, and CO injury for pedestrian–vehicle crashes in the ST-

ARanova model. The significant variables include ratios of females, ratios of young people, median household income,
oad density, annual average temperature, and annual average snowfall amount. It is found that socio-demographic
haracteristics have the biggest effects on the crash risk of pedestrian crashes, which is the same with the results of
icycle–vehicle crash modeling.
In terms of female ratios, it is shown that this variable displayed significant positive effects on the crash risk of KA

nd B in pedestrian crashes, especially on the crash risk of B crashes. There is no firm evidence shows that the female
atio is closely correlated with the crash frequency of pedestrians in the current studies. Thus, maybe females do not
rive as much as male people, and they are likely to be exposed to the traffic environment. Another possible reason is
hat females are physically more vulnerable than males. Ratios of young people aged between 15 to 25 show significant
ositive effects on minor injury severity of pedestrian crashes. It has been proven that young people are more likely to be
nvolved in aggressive driving [51]. Besides, median household income is found to be weakly associated with the crash
isk of KA crashes of pedestrians in the present study. It is possible that people from lower-income families may walk or
se public transportation frequently and have more walking exposure [18].
Snowfall do not show significant effects on KA and CO injury severities of pedestrians. Liu and Sharma [13] thought

hat adverse weather probably resulted in more crashes in the short term but may also reduce people’s traveling, leading
o lower crash numbers. However, the annual high temperature is strongly associated with the increased crash risk of
hree injury severities of pedestrian crashes. After conducting the analysis of the marginal effects for the ST-CARanova
odel in pedestrian crashes, an increase in the high temperature of 1 Fahrenheit degree associates with a 5.1%, 4.3%, and
.9% increase in the crash risk of KA, B, and CO. It was also found that pedestrians tended to have a higher likelihood of KA
rashes when the air temperature is higher than 86 ◦F [52]. A reasonable explanation for this is that people like to walk
n the outside at a warm weather. However, a very high temperature (over 90 ◦F) is found to decrease the pedestrian
rips according to the study of Lee et al. [53].

To draw a conclusion, socio-demographic indicators have significant impacts on the crash risk of different injury
everities levels for cyclists and pedestrians in the long term. When we make traffic safety planning or improvement
ountermeasures in the county-level, the demographic data (e.g., sex ratios, different age gap ratios, median household
ncome) should be taken full consideration of as they have non-negligible effects on the overall safety performance of
RUs. In contrast with the modeling results of pedestrian crashes, bicycle crashes have a higher possibility of being easily
nfluenced by the changes of socio-demographic features according to the results of the marginal effects, which need
pecial attention from the transportation authorities in U.S.

. Conclusions

Focusing on the bicycle crashes and pedestrian crash risk in three injury severity levels in the counties of North
arolina, three multivariate Bayesian space–time models with different spatiotemporal effects are developed. This study
xamines the effects of socio-demographic features (e.g., ratios of female, ratios of young people, and unemployment
ates), roadway characteristics (e.g., roadway density), and weather conditions (e.g., snowfall and average high tempera-
ure). Then, spatiotemporal interactions of the bicycle and pedestrian crash risk by different injury severities in the ten
ears are analyzed.
Results of Bayesian space–time models indicate that the ST-CARanova model outperforms the ST-CARar model and

he ST-CARadaptive model in most cases of bicycle and pedestrian crashes. ST-CARanova models are recommended in the
odeling of VRU-related crashes because they can take account of the overall trends of space, time, and spatiotemporal

nteraction i. Meanwhile, the fitting performance of the ST-CARar model and the ST-CARadaptive model is almost the
ame in terms of evaluation indexes. Furthermore, the long-term spatiotemporal effects in the bicycle and pedestrian
rash risk show similar patterns across three injury severities.
A key contribution of this study is the finding of the temporal correlation, spatial heterogeneity, and spatiotemporal

nteraction in the crash risk of cyclists and pedestrians in the long-term, which should be addressed in future studies of
RUs. Another contribution of the paper is the inclusion of yearly changed socio-demographic, roadway structure, and
eather variables in the estimated models. Socio-demographic variables like female ratios, young people (aged 15–24)
atios, and weather variables like annual average high temperatures are found to have a significant and positive correlation
ith the crash risk of bicycles and pedestrians. We also find that the effects of contributory factors of both bicycle and
edestrian crashes on the crash risk varied between different injury severity levels. Given the context of the Highway
afety Plan of North Carolina 2020, we hope that our findings would help planners and policy makers make more informed
ecisions towards VRUs to reduces related crashes, such as pay more attention to counties with relatively high ratios of
emales and young people, provide appropriate education and enforcement measures to these people, and conduct the
oad Awareness Program for vehicle drivers.
In future researches, it would be worthy to analyze the spatiotemporal patterns of smaller space and time scales

or VRUs-involved crashes rather than county-level. Besides, there is a need to include more explanatory variables at
he macroscopic modeling of VRUs-involved crashes, such as traffic infrastructure, commuting features and cycling and
alking facilities. Due to the limitation of collecting the yearly county-level exposure data for cyclists and pedestrians, the
stimated exposure of walking and cycling may be inaccurate when compared with the actual exposure, and we suggest
hat field observation of vehicle–pedestrian and Vehicle–bicycle exposure is needed to conduct in order to adjust the

stimated exposure data in the future. .
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